
Disk Resident Extendible Arrays

Ekow Otoo and Doron Rotem

Lawrence Berkeley National Laboratory

E. J. Otoo & D. Rotem (LBNL) DRXTA: Disk Resid. Extendible Array October 7, 2008 1 / 16



Outline

1 The Extendible Array File and Structural Properties

2 Motivation and Applications

3 Disk Resident Extendible Arrays

4 Parallel Access of Disk Resident Dense Extendible Array

5 Implementation Status

6 Managing Sparse Array Files

7 Comparison with Alternatives and Complexity

8 The New Desired Features and Future Work

E. J. Otoo & D. Rotem (LBNL) DRXTA: Disk Resid. Extendible Array October 7, 2008 2 / 16



Outline

1 The Extendible Array File and Structural Properties

2 Motivation and Applications

3 Disk Resident Extendible Arrays

4 Parallel Access of Disk Resident Dense Extendible Array

5 Implementation Status

6 Managing Sparse Array Files

7 Comparison with Alternatives and Complexity

8 The New Desired Features and Future Work

E. J. Otoo & D. Rotem (LBNL) DRXTA: Disk Resid. Extendible Array October 7, 2008 2 / 16



Outline

1 The Extendible Array File and Structural Properties

2 Motivation and Applications

3 Disk Resident Extendible Arrays

4 Parallel Access of Disk Resident Dense Extendible Array

5 Implementation Status

6 Managing Sparse Array Files

7 Comparison with Alternatives and Complexity

8 The New Desired Features and Future Work

E. J. Otoo & D. Rotem (LBNL) DRXTA: Disk Resid. Extendible Array October 7, 2008 2 / 16



Outline

1 The Extendible Array File and Structural Properties

2 Motivation and Applications

3 Disk Resident Extendible Arrays

4 Parallel Access of Disk Resident Dense Extendible Array

5 Implementation Status

6 Managing Sparse Array Files

7 Comparison with Alternatives and Complexity

8 The New Desired Features and Future Work

E. J. Otoo & D. Rotem (LBNL) DRXTA: Disk Resid. Extendible Array October 7, 2008 2 / 16



Outline

1 The Extendible Array File and Structural Properties

2 Motivation and Applications

3 Disk Resident Extendible Arrays

4 Parallel Access of Disk Resident Dense Extendible Array

5 Implementation Status

6 Managing Sparse Array Files

7 Comparison with Alternatives and Complexity

8 The New Desired Features and Future Work

E. J. Otoo & D. Rotem (LBNL) DRXTA: Disk Resid. Extendible Array October 7, 2008 2 / 16



Outline

1 The Extendible Array File and Structural Properties

2 Motivation and Applications

3 Disk Resident Extendible Arrays

4 Parallel Access of Disk Resident Dense Extendible Array

5 Implementation Status

6 Managing Sparse Array Files

7 Comparison with Alternatives and Complexity

8 The New Desired Features and Future Work

E. J. Otoo & D. Rotem (LBNL) DRXTA: Disk Resid. Extendible Array October 7, 2008 2 / 16



Outline

1 The Extendible Array File and Structural Properties

2 Motivation and Applications

3 Disk Resident Extendible Arrays

4 Parallel Access of Disk Resident Dense Extendible Array

5 Implementation Status

6 Managing Sparse Array Files

7 Comparison with Alternatives and Complexity

8 The New Desired Features and Future Work

E. J. Otoo & D. Rotem (LBNL) DRXTA: Disk Resid. Extendible Array October 7, 2008 2 / 16



Outline

1 The Extendible Array File and Structural Properties

2 Motivation and Applications

3 Disk Resident Extendible Arrays

4 Parallel Access of Disk Resident Dense Extendible Array

5 Implementation Status

6 Managing Sparse Array Files

7 Comparison with Alternatives and Complexity

8 The New Desired Features and Future Work

E. J. Otoo & D. Rotem (LBNL) DRXTA: Disk Resid. Extendible Array October 7, 2008 2 / 16



Main Characteristics

The basic structure is a multidimensional array stored under a simple
Unix file system or in a parallel file system

any dimension is allowed to extend arbitrary

parallel applications read/write/manipulate entire array or sub-arrays

array can be extended without reorganizing previously allocated
elements,

define a mapping function and its inverse for element access.

basic data types are: integers, floats, double and complex types.

Feature extension, addressed later, to meet the requirements of
ArrayDB storage system — Documents of the SciDB Meetings

In particular, extensions should be along extents of the dimensions,
number of dimensions, and resolution of the array cells where
applicable.

E. J. Otoo & D. Rotem (LBNL) DRXTA: Disk Resid. Extendible Array October 7, 2008 3 / 16



Main Characteristics

The basic structure is a multidimensional array stored under a simple
Unix file system or in a parallel file system

any dimension is allowed to extend arbitrary

parallel applications read/write/manipulate entire array or sub-arrays

array can be extended without reorganizing previously allocated
elements,

define a mapping function and its inverse for element access.

basic data types are: integers, floats, double and complex types.

Feature extension, addressed later, to meet the requirements of
ArrayDB storage system — Documents of the SciDB Meetings

In particular, extensions should be along extents of the dimensions,
number of dimensions, and resolution of the array cells where
applicable.

E. J. Otoo & D. Rotem (LBNL) DRXTA: Disk Resid. Extendible Array October 7, 2008 3 / 16



Main Characteristics

The basic structure is a multidimensional array stored under a simple
Unix file system or in a parallel file system

any dimension is allowed to extend arbitrary

parallel applications read/write/manipulate entire array or sub-arrays

array can be extended without reorganizing previously allocated
elements,

define a mapping function and its inverse for element access.

basic data types are: integers, floats, double and complex types.

Feature extension, addressed later, to meet the requirements of
ArrayDB storage system — Documents of the SciDB Meetings

In particular, extensions should be along extents of the dimensions,
number of dimensions, and resolution of the array cells where
applicable.

E. J. Otoo & D. Rotem (LBNL) DRXTA: Disk Resid. Extendible Array October 7, 2008 3 / 16



Motivation and Applications

The earliest application known for the need of extendible arrays is in
telecommunication network analysis — Arnold Rosenberg and
Stockmeyer.

Scientific data analysis use multidimensional arrays as their
fundamental data structures. Examples of Array Files:

HDF/HDF5 and variants
NetCDF/pNetCDF
FITS
Quaternary Triangular Mesh (QTM), Hierarchical Triangular Mesh
(HTM), etc.
Global Array toolkit
Quad-tree, Linear Quad-codes and in general structures that are based
on spatial mappings of space filling curves.

Application in data warehousing

E. J. Otoo & D. Rotem (LBNL) DRXTA: Disk Resid. Extendible Array October 7, 2008 4 / 16



Motivation and Applications

The earliest application known for the need of extendible arrays is in
telecommunication network analysis — Arnold Rosenberg and
Stockmeyer.

Scientific data analysis use multidimensional arrays as their
fundamental data structures. Examples of Array Files:

HDF/HDF5 and variants
NetCDF/pNetCDF
FITS
Quaternary Triangular Mesh (QTM), Hierarchical Triangular Mesh
(HTM), etc.
Global Array toolkit
Quad-tree, Linear Quad-codes and in general structures that are based
on spatial mappings of space filling curves.

Application in data warehousing

E. J. Otoo & D. Rotem (LBNL) DRXTA: Disk Resid. Extendible Array October 7, 2008 4 / 16



Motivation and Applications, Cont.

ArrayDB (Most recent proposal from SciDB meeting):

allow extent of each dimension to expand
allow the number of dimensions to expand
time is implicit i.e., insertion is automatically associated with time and
deletion is only logical.
The ArrayDB can be versioned at any instant in time.
to be implemented with combined of features of HDF/HDF5, R-Trees,
HTM, Map-Reduce, Vertica, Postgress

E. J. Otoo & D. Rotem (LBNL) DRXTA: Disk Resid. Extendible Array October 7, 2008 5 / 16



Illustration of a Dense Extendible Array

A 2-D array initially defined as A[3][3] and then extended by 2 columns,
then by 1 row, followed by 1 column and so on.

3

2

1

0

0 2 4 51 3 6

0 1 2

3 4 5

6 7 8 11

10

9

14

13

12

15 16 17 18 19

20

21

22

23

24

25

26

27

The labels in the cells are location addresses of the elements.

An element A〈2, 5〉 maps to location 22

The address calculation is done by a function denoted as:
F∗(i0, i1, . . . , ik−1)→ I
and an inverse F−1

∗ (I )→ 〈i0, i1, . . . , ik−1〉

E. J. Otoo & D. Rotem (LBNL) DRXTA: Disk Resid. Extendible Array October 7, 2008 6 / 16



Illustration of a Dense Extendible Array

A 2-D array initially defined as A[3][3] and then extended by 2 columns,
then by 1 row, followed by 1 column and so on.

3

2

1

0

0 2 4 51 3 6

0 1 2

3 4 5

6 7 8 11

10

9

14

13

12

15 16 17 18 19

20

21

22

23

24

25

26

27

The labels in the cells are location addresses of the elements.

An element A〈2, 5〉 maps to location 22

The address calculation is done by a function denoted as:
F∗(i0, i1, . . . , ik−1)→ I
and an inverse F−1

∗ (I )→ 〈i0, i1, . . . , ik−1〉

E. J. Otoo & D. Rotem (LBNL) DRXTA: Disk Resid. Extendible Array October 7, 2008 6 / 16



Linear Mapping for a Dense Extendible Array

−1,−1,[0,0],s

0,0,[3,1],s

3,9,[1,3],s 5,20,[1,4],s

3,15,[5,1],s 1

1

0

0 2Axial−Vectors

First Storage Location Pointer

Multiplying Coefficients

Starting Address of Segment

First Index of Segment

3

2

1

0

0 2 4 51 3 6

1 2

3 4 5

6 7 8 11

10

14

13

12

16 17 18 19

21

22

23

24

25

26

27

200

15

9

The element A〈2, 5〉 is located in either segment of row 2 with start address
0 or segment of column 5 with start address 20.

It is always allocated in segment with maximum starting address.

The address of A〈2, 5〉 is computed by the algorithm F∗().

E. J. Otoo & D. Rotem (LBNL) DRXTA: Disk Resid. Extendible Array October 7, 2008 7 / 16



Linear Mapping for a Dense Extendible Array

−1,−1,[0,0],s

0,0,[3,1],s

3,9,[1,3],s 5,20,[1,4],s

3,15,[5,1],s 1

1

0

0 2Axial−Vectors

First Storage Location Pointer

Multiplying Coefficients

Starting Address of Segment

First Index of Segment

3

2

1

0

0 2 4 51 3 6

1 2

3 4 5

6 7 8 11

10

14

13

12

16 17 18 19

21

22

23

24

25

26

27

200

15

9

The element A〈2, 5〉 is located in either segment of row 2 with start address
0 or segment of column 5 with start address 20.

It is always allocated in segment with maximum starting address.

The address of A〈2, 5〉 is computed by the algorithm F∗().

E. J. Otoo & D. Rotem (LBNL) DRXTA: Disk Resid. Extendible Array October 7, 2008 7 / 16



Disk Resident Extendible Arrays

The elements are first grouped into chunks of some predefined
Chunk-Shape, A[I0][I1] . . . A[Ik−1]
The chunks form the units of transfer between memory and a parallel
file system.

The mapping functions discussed are now applied to address the
chunks and the array elements within a chunk can now be accessed
using conventional array element address calculation.

The Axial-Vectors are retained in a Meta-Data file but read into
memory at each session.

Additional information in the Meta-Data include the bounds of the
array, the chunk-shapes, etc.

E. J. Otoo & D. Rotem (LBNL) DRXTA: Disk Resid. Extendible Array October 7, 2008 8 / 16



Disk Resident Extendible Arrays

The elements are first grouped into chunks of some predefined
Chunk-Shape, A[I0][I1] . . . A[Ik−1]
The chunks form the units of transfer between memory and a parallel
file system.

The mapping functions discussed are now applied to address the
chunks and the array elements within a chunk can now be accessed
using conventional array element address calculation.

The Axial-Vectors are retained in a Meta-Data file but read into
memory at each session.

Additional information in the Meta-Data include the bounds of the
array, the chunk-shapes, etc.

E. J. Otoo & D. Rotem (LBNL) DRXTA: Disk Resid. Extendible Array October 7, 2008 8 / 16



Disk Resident Extendible Arrays

The elements are first grouped into chunks of some predefined
Chunk-Shape, A[I0][I1] . . . A[Ik−1]
The chunks form the units of transfer between memory and a parallel
file system.

The mapping functions discussed are now applied to address the
chunks and the array elements within a chunk can now be accessed
using conventional array element address calculation.

The Axial-Vectors are retained in a Meta-Data file but read into
memory at each session.

Additional information in the Meta-Data include the bounds of the
array, the chunk-shapes, etc.

E. J. Otoo & D. Rotem (LBNL) DRXTA: Disk Resid. Extendible Array October 7, 2008 8 / 16



The Allocation Scheme

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

������
������
������

������
������
������

������
������
������

������
������
������

������
������
������

������
������
������

��
��
��

��
��
��

0 1 2

3 54

0 1 2

3 54

0 1 2

3 54

0 1 2

3 54

0 1 2

3 54

0 1 2

3 54

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

����
����
����

����
����
����

�������
�������
�������

�������
�������
�������

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

Processor

Buffer/Cache

Global 

Subarray

0 1

2 3

4 5

6

10

7

8

9 11

12

13

14

15

16 17 18 19

P0 P1

P2 P3

P0 P1 P2 P3

0 1 18 19

Layout of Array Chunks in a File

Partitined into

4 zones for the 

4 processors

1 2 3

0 4 51 2 3 7 8 9 106

0

11
0

1

2

3

4

5

9

8

7

6

{

{

{

{

{

0

1

2

3

4

0 1 2 3 4 5 0 1 2 3 4 0 1 2 05

Principal Array

F

0 1 2

3 54

0 1 2

3 54

0 1 2

3 54

0 1 2

3 54

0 1 2

3 54

0 1 2

3 54

0 1 2

3 54

0 1 2

3 54

0 1 2

3 54

0 1 2

3 54

0 1 2

3 54

0 1 2

3 54

0 1 2

3 54

0 1 2

3 54

E. J. Otoo & D. Rotem (LBNL) DRXTA: Disk Resid. Extendible Array October 7, 2008 9 / 16



Accessing Dense Extendible Arrays (The pDRXA Library)

Array is distributed by Block, Block partitioning scheme and along chunk
boundaries. Block-Cyclic partitioning not yet

A process controls a region of sub-array called a zone and an application can
sub-arrays with either independent or collective I/O.

Each process then makes its zone accessible by creating a memory window
for RMA access.

Since each process has all the distribution information, it can access an
element locally, if it controls the zone of the element; otherwise it accesses
the element remotely via functions like MPI Get(), MPI Put() and
MPI Accumulate(), etc.

The processing model is consistent with the Global-Array toolkit model for
parallel processing of arrays.

The idea then is to define the access functions to be consistent with the
Disk Resident Array library of GA and leverage the scientific processing
capability of GA.

E. J. Otoo & D. Rotem (LBNL) DRXTA: Disk Resid. Extendible Array October 7, 2008 10 / 16



Accessing Dense Extendible Arrays (The pDRXA Library)

Array is distributed by Block, Block partitioning scheme and along chunk
boundaries. Block-Cyclic partitioning not yet

A process controls a region of sub-array called a zone and an application can
sub-arrays with either independent or collective I/O.

Each process then makes its zone accessible by creating a memory window
for RMA access.

Since each process has all the distribution information, it can access an
element locally, if it controls the zone of the element; otherwise it accesses
the element remotely via functions like MPI Get(), MPI Put() and
MPI Accumulate(), etc.

The processing model is consistent with the Global-Array toolkit model for
parallel processing of arrays.

The idea then is to define the access functions to be consistent with the
Disk Resident Array library of GA and leverage the scientific processing
capability of GA.

E. J. Otoo & D. Rotem (LBNL) DRXTA: Disk Resid. Extendible Array October 7, 2008 10 / 16



Accessing Dense Extendible Arrays (The pDRXA Library)

Array is distributed by Block, Block partitioning scheme and along chunk
boundaries. Block-Cyclic partitioning not yet

A process controls a region of sub-array called a zone and an application can
sub-arrays with either independent or collective I/O.

Each process then makes its zone accessible by creating a memory window
for RMA access.

Since each process has all the distribution information, it can access an
element locally, if it controls the zone of the element; otherwise it accesses
the element remotely via functions like MPI Get(), MPI Put() and
MPI Accumulate(), etc.

The processing model is consistent with the Global-Array toolkit model for
parallel processing of arrays.

The idea then is to define the access functions to be consistent with the
Disk Resident Array library of GA and leverage the scientific processing
capability of GA.

E. J. Otoo & D. Rotem (LBNL) DRXTA: Disk Resid. Extendible Array October 7, 2008 10 / 16



Current Status

The dense extendible array is completed and the parallel counterpart
is usable much like global array with MPI-2 but does not do true
out-of-core array operations.

The interface implementation to allow it to be used as a replacement
for DRA of GA is ongoing.

Two challenges posed for its use in managing HDF5 chunks:

How does its performance compare with skiplist indexed array chunks?
How does it manage sparse array chunks?
How does it manage multi-resolution arrays?
Can it be used for multi-threaded applications?

E. J. Otoo & D. Rotem (LBNL) DRXTA: Disk Resid. Extendible Array October 7, 2008 11 / 16



Current Status

The dense extendible array is completed and the parallel counterpart
is usable much like global array with MPI-2 but does not do true
out-of-core array operations.

The interface implementation to allow it to be used as a replacement
for DRA of GA is ongoing.

Two challenges posed for its use in managing HDF5 chunks:

How does its performance compare with skiplist indexed array chunks?
How does it manage sparse array chunks?
How does it manage multi-resolution arrays?
Can it be used for multi-threaded applications?

E. J. Otoo & D. Rotem (LBNL) DRXTA: Disk Resid. Extendible Array October 7, 2008 11 / 16



Managing Sparse Arrays

The general technique is by chunking, compression, and indirect
addressing

HDF5 uses B+-Tree.

The new research direction is with the use of Skip-List in place of
B+-Tree.

Our approach for managing and indexing array chunks is with
Balanced Extendible Hashing instead of Skip-List.

The basic BEH is completed and to avoid future questions on its use,
it is being modified to be thread safe.

We are implementing the Skip-List ideas for performance comparisons.

E. J. Otoo & D. Rotem (LBNL) DRXTA: Disk Resid. Extendible Array October 7, 2008 12 / 16



Idea of the Balanced Extendible Hashing Scheme

Directory

Expansion

B1

B2

100

101

111

001

000

B2

B3

3

010

011

110

2

00

11

10

01 B1

B2

2

00

11

10

01 B1

B2

2

00

11

10

01 B3

0

1

1

Bal. Ext. Hashing

Instead of allowing the directory to double we impose a bound on the
number of bits used to address into it to say l bits.

For a bitstring of 64, setting l to 12 gives at most 4 or 5 levels.

Caching further reduces number of disk accesses.

E. J. Otoo & D. Rotem (LBNL) DRXTA: Disk Resid. Extendible Array October 7, 2008 13 / 16



Idea of the Balanced Extendible Hashing Scheme

Directory

Expansion

B1

B2

100

101

111

001

000

B2

B3

3

010

011

110

2

00

11

10

01 B1

B2

2

00

11

10

01 B1

B2

2

00

11

10

01 B3

0

1

1

Bal. Ext. Hashing

Instead of allowing the directory to double we impose a bound on the
number of bits used to address into it to say l bits.

For a bitstring of 64, setting l to 12 gives at most 4 or 5 levels.

Caching further reduces number of disk accesses.

E. J. Otoo & D. Rotem (LBNL) DRXTA: Disk Resid. Extendible Array October 7, 2008 13 / 16



Comparison with Alternatives and Complexity

Index
Method

Complexity of
Chunk Address

No Accesses Extendibility

Dense B+-Tree (
+ sparse
Arrays)

O(B logdB/2e np) O(logdB/2e np) Any Dimen.

Extendible
Array

O(k log log np) 1 Any Dimen.

Skip-List
(+ sparse
Arrays)

O(log np) O(log np) One Dimen.

Sparse Bal. Ext.
Hash.

O(1) l ≤ 4 Any Dimen.

E. J. Otoo & D. Rotem (LBNL) DRXTA: Disk Resid. Extendible Array October 7, 2008 14 / 16



The New Desired Features, Why and Future Work

The why is simply — provide the storage system desired by the
ArrayDB model.

Current work already meets some of the storage requirement of
ArrayDB:

usage in a cluster environment and parallel file systems
has extendible extents and very easy to extend number of dimensions
can leverage the capability of the Global Array tookit for array and
matrix operations in memory.

E. J. Otoo & D. Rotem (LBNL) DRXTA: Disk Resid. Extendible Array October 7, 2008 15 / 16



The New Desired Features, Why and Future Work

The why is simply — provide the storage system desired by the
ArrayDB model.

Current work already meets some of the storage requirement of
ArrayDB:

usage in a cluster environment and parallel file systems
has extendible extents and very easy to extend number of dimensions
can leverage the capability of the Global Array tookit for array and
matrix operations in memory.

E. J. Otoo & D. Rotem (LBNL) DRXTA: Disk Resid. Extendible Array October 7, 2008 15 / 16



The New Desired Features and Future Work, Cont.

Future requirements to be met include:

Make elements of the arrays to be tuples, i.e., base elements - floats,
integers
+ elements that are multidimensional arrays with the limitation that
the valued-attributes can only be basic types.
Usage in multiple clusters as a Peer-to-Peer distributed file for K-fault
tolerance
allow multi-resolution array with regular and irregular extents.
allow time as an automatic variable
ensure no updates in places:
Old values are time stamped with deletion time and
allow the array data to be versionable
Write Meta-data file in XML and maintain it in the array data file.
leverage the capability of the Global Array toolkit but with out-of-core
array and matrix operations.

E. J. Otoo & D. Rotem (LBNL) DRXTA: Disk Resid. Extendible Array October 7, 2008 16 / 16


	The Extendible Array File and Structural Properties
	Motivation and Applications
	Disk Resident Extendible Arrays
	Parallel Access of Disk Resident Dense Extendible Array
	Implementation Status
	Managing Sparse Array Files
	Comparison with Alternatives and Complexity
	The New Desired Features and Future Work

